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Computational techniques for nanostructure determination of substances that

resist standard crystallographic methods are often laborious processes starting

from initial guess solutions not derived from experimental data. The Liga

algorithm can create nanostructures using only lists of lengths or distances

between atom pairs, providing an experimental basis for starting structures.

These distance lists may be extracted from a variety of experimental probes and

we illustrate the procedure with distances determined from the pair distribution

function. Candidate subclusters that are a subset of a structure’s atoms compete

based on adherence to the length list. Atoms are added to well performing

candidates and removed from poor ones, until a complete structure with

sufficient agreement to the length list emerges. The Liga algorithm is shown to

reliably recreate Lennard–Jones clusters from ideal length lists and the C60

structure from neutron-scattering data. The correct fullerene structure was

obtained with experimental data which missed several distances and had

loosened constraints on distance multiplicity. This suggests that the Liga

algorithm may have robust applicability for a wide range of nanostructures even

in the absence of ideal data.

1. Introduction

The nanostructure problem, that of determining the location

(and species) of atoms in materials on nanoscale dimensions

(Billinge & Levin, 2007), is often resistant to standard crys-

tallographic techniques because of a lack of long-range

periodicity in such structures. If the nanoparticles can be

coaxed into an orientationally ordered crystal the structure

can be solved crystallographically (Jadzinsky et al., 2007), but

in general this is very difficult. Obtaining the structure solution

using disordered ensembles of nanoparticles is very appealing,

but remains a severe challenge in both data collection and its

analysis. Multidimensional NMR measurements can be used

to solve the structure of small proteins (Crippen & Havel,

1988; Brünger et al., 1998; Herrmann et al., 2002), though a

great deal of prior information is used and the final structures

do not have high precision. High-quality images of individual

nanoparticles with atomic resolution can be obtained using

transmission electron microscopy (Wang, 2000; McBride et al.,

2004), diffraction imaging with electrons (Zuo et al., 2003) and

scanning tunneling microscopy (Helveg et al., 2000). It is not,

however, straightforward to go from real-space images of

nanoparticles to quantitative structures. In this paper we

describe in detail an algorithm that successfully determines

quantitative three-dimensional atomic arrangements from the

one-dimensional information in the atomic pair distribution

function (PDF) (Egami & Billinge, 2003). The PDF is obtained

experimentally from neutron or X-ray powder diffraction data

from a disordered ensemble of nanoparticles. A preliminary

description of this algorithm has already appeared (Juhás et

al., 2006).

The PDF has peaks at distances corresponding to the

separation between pairs of atoms in the material (Warren,

1990; Egami & Billinge, 2003). The multiplicities of these

separations can be found by integrating the areas of the peaks.

It is straightforward to calculate the PDF given a three-

dimensional structural model, and programs exist for refining

structural models given a good initial guess of the solution

(Farrow et al., 2007; Tucker et al., 2001). For highly disordered

materials such as glasses, unbiased Monte Carlo methods yield

structural solutions consistent with the PDF data (McGreevy

& Pusztai, 1988). We tried to adopt reverse Monte Carlo

(RMC) for structure determination of small well defined

structures by fitting to synthetic PDF curves, but this was

prohibitively slow for any clusters larger than eight atoms. For

example, we were not able to reconstruct a 12-point (2 � 2 �

3) doubled cube. The RMC procedure was somewhat more

successful after we simplified the cost function to fit a discrete

set of distances instead of a continuous PDF curve and

included a downhill refinement of atom position after each

RMC step. These modifications allowed reconstruction of all

Platonic solids and 20-atom Lennard–Jones clusters, but only
‡ Current address: Applied Physics & Applied Mathematics, Columbia
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with excessive computational time, and the program remained

unable to converge for prism-like shapes.

Owing to these limitations, we have explored different

methods to optimize structure shapes with respect to distance

data available in the PDF. The best performance so far in

terms of speed and convergence rate has been observed with a

new method, known as the Liga algorithm because of its use

of competition with promotion and relegation similar to

European soccer leagues (Juhás et al., 2006). The Liga algo-

rithm can reconstruct clusters of up to ~150 atoms using just

the atomic pair distance information available in a one-

dimensional PDF measurement. We provide a complete

description of the Liga algorithm, and an analysis of its

performance with both ideal and experimental data, and

discuss some possible extensions.

2. Liga algorithm concepts

The Liga algorithm searches for a structure of N atoms

consistent with the supplied list of pair distances. The input

distances can be obtained by fitting peaks to the experimental

PDF (Egami & Billinge, 2003) or simply calculated in the case

of known test structures. The Liga procedure maintains a pool

of candidate subclusters (or simply candidates) of each

possible size less than or equal to N, separated into divisions

labeled n ¼ 1; 2; . . . ;N, equal to the subcluster size. These

candidates compete with others in the same division via a cost

function that measures deviation from the length list. Each

division contains a fixed number of candidates, typically ten in

our trials.

The following describes the basic operation of the Liga

algorithm. Exceptions and special cases that alter this simple

description, such as initialization procedures, are examined in

detail in x4.

The Liga algorithm performs iterations called ‘seasons’,

each of which runs through all divisions starting at the lowest

level nmin up to the full-sized division N. Often nmin = 1, though

tests with selected starting subclusters with nmin > 1 have also

been investigated. At each division, n, a winning candidate

subcluster is selected randomly, with relative probability equal

to the reciprocal of its cost, from all those in its division. This

winning subcluster is promoted by adding one or more atoms

to the subcluster. Atoms to be added are selected from a large

pool of ‘good’ test atoms with relative probability equal to the

reciprocal of their contribution to the cost of the winning

subcluster. The creation of this pool of ‘good’ test atoms is

described below in x3. Atoms from this pool are added until

the winning subcluster reaches the maximum size N or the

winning subcluster’s new cost exceeds a certain tolerance. The

number of atoms in the subcluster after the promotion indi-

cates the division that it joins. A losing candidate subcluster is

then randomly selected, based on its cost, from the pre-

existing candidates at this higher division. The losing structure

undergoes a relegation process by removing exactly the

number of atoms the promoted subcluster had gained. The

removed atoms are selected stochastically with a relative

probability equal to their contribution to the loser’s total cost.

In this way the winning and losing subclusters swap divisions,

as illustrated in Fig. 1.

Once the promotion and relegation procedures have been

carried out at division n, the algorithm repeats the process at

the (n + 1)th division, continuing until it eventually reaches

division N. Candidate subclusters in the highest division

cannot add more atoms, and so the algorithm evaluates

whether or not a solution has been found. A candidate at full-

size N is declared the solution if its cost is below a user-defined

tolerance. If a solution is not found, a new season begins from

the lowest division once again.

3. Liga’s functions in detail

3.1. Cost function

All competition in the Liga algorithm is resolved prob-

abilistically through weights derived from the cost function.

The cost of a candidate subcluster quantizes the degree to

which it deviates from the length list. The algorithm also tracks

the individual contribution of every atom to the total cost of a

subcluster, thus measuring how ‘poor’ its placement is with

respect to other atoms and allowing the prioritization of which
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Figure 1
A schematic of promotion and relegation operations in a system with ten
divisions, each with four competing clusters, while at the n = 4 division.
The winning candidate is randomly selected, favoring those with low cost,
and it attempts to add as many good atoms as possible (denoted ‘�’).
Assuming the winner is able to add five atoms before exceeding a cost
tolerance, it will get promoted to division n = 9. A losing candidate is then
randomly selected from the n = 9 division and five of its atoms are
removed, moving it to the winner’s original division. The losing candidate
and the atoms removed are randomly selected, but favor those with high
cost.



positions should be changed (Bortz et al., 1975; Greene &

Supowit, 1986; Altschuler et al., 1994).

The target distance list tk contains P length values, where P

= N(N � 1)/2 is the number of pairs in an N-atom structure.

Distances often appear several times in the list owing to

degeneracies in the bond-length values. The cost of a full-sized

structure is calculated as

C ¼ ð1=PÞ
PP
k¼1

ðtk � dkÞ
2; ð1Þ

where tk and dk are sorted lists of target and actual distances.

The summation over sorted distance sets results in minimum

cost C. This can be shown by calculating the cost difference

�C for swapping the assignment of two model distances,

�C ¼ ½ðtk � dlÞ
2
þ ðtl � dkÞ

2
� � ½ðtk � dkÞ

2
þ ðtl � dlÞ

2
�

¼ 2ðtk � tlÞðdk � dlÞ: ð2Þ

When target distances are sorted, tk > tl, and swapping of any

unsorted model distances dk < dl would result in a lower cost.

Therefore the assignment of sorted model to sorted target

distances must be the one with the minimum cost C.

In some cases, see x4.6 below, the target distance list may be

extended by enlarging the multiplicities of its unique distances

so that it contains more lengths than present in a full-sized

structure. The cost is then calculated as

C ¼ ð1=PÞ
PP
k¼1

ðtext
lðkÞ � dkÞ

2; ð3Þ

where text
lðkÞ is the extended target distance list and lðkÞ is an

assignment of model distances to the nearest target lengths.

The cost of candidate subclusters with fewer than N atoms is

obtained as

C ¼ ð1=pÞ
Pp
k¼1

tlðkÞ � dk

� �2
; ð4Þ

where p ¼ nðn� 1Þ=2 is the number of pairs in the candidate.

The assignment lðkÞ maps the model length dk to the nearest

unused target distance lðkÞ. This amounts to labeling each

edge in the model subcluster with the length it ‘should’ have.

Because the assignment lðkÞ is constructed gradually from a

subset of distances, it may not be optimal once the structure

reaches its full size. Thus to ensure an accurate cost value, the

model and target distances are sorted and reassigned every

time a candidate cluster grows to the full size.

The individual cost contribution of atom i is expressed

through the partial sum

ci ¼ ð1=2pÞ
Pn
j 6¼i

tlðijÞ � dij

� �2
ð5Þ

such that

C ¼
Pn
i¼1

ci: ð6Þ

The fitness of a candidate subcluster, F, and of an atom, fi, are

defined to be the reciprocal of C and ci, respectively. If the cost

value is 0, the fitness is made significantly larger (by a factor of

10) than that of its next-best peer in the same Liga division

(for clusters) or cluster (for atoms). If all peers have cost 0, the

fitness for each is set to 1.

When selecting a subcluster or atom we refer to ‘winners’ as

those chosen randomly with probability proportional to

fitness, and ‘losers’ as those chosen with probability propor-

tional to cost (Dall & Sibani, 2001; Boettcher & Sibani, 2005).

3.2. Promotion

Promotion is the process of changing the division to which a

candidate belongs by adding at least one atom, and more if it

appears favorable. The first addition will create n new atomic

pairs and uses the n nearest lengths from the target distance

table. The distances which are available are only those in the

target set tk that have not already been used in the existing

candidate subcluster (but see x4.6). The Liga algorithm

generates possible positions for new atoms using three

different methods:

(1) Line trials. This method places new sites in-line with two

existing atoms in the cluster. Frequently the existing structures

have three or more aligned atoms, and the technique attempts

to capture such structure motifs. Two atoms in a subcluster are

randomly chosen with a probability based on their fitness, and

one unused distance is picked from the target table tk. The first

atom is used as an anchor for the distance, while the second

defines the direction towards the new site. When there is only

one atom in the structure, the direction is set along the z axis.

Two new positions are generated for both orientations of the

distance vector.

(2) Planar trials. This method accounts for occurrence of

atom planes in existing structures. Three atoms are randomly

chosen based on their fitness. Two of them are used as the

triangle base, while the third one defines the plane of a

triangle. When there are fewer than three atoms (or when the

chosen atoms form a line) the triangle plane is generated such

that the base line defines its angle to the nearest Cartesian

plane. Two distances are selected from the available target

lengths and are used to construct a triangle vertex. In general

four vertexes are possible within a given plane, so this method

adds four candidate positions.

(3) Pyramid trials. Three atoms in the subcluster are

randomly selected based on their fitness to form a base for a

pyramid of four atoms. The remaining vertex is constructed

using three randomly chosen lengths from the list of target

distances. As there are 3! ways of assigning three lengths to

three atoms, and because a pyramid vertex can be placed

above or below the base plane, this method generates 12

candidate positions.

Each of these methods is repeated many times (typically

10 000 in our trials) to provide a large pool of possible posi-

tions for the new atom. For each of the generated sites Liga

calculates the associated cost increase for the enlarged

candidate and it filters the ‘good’ positions with the new cost in

a cost window hCmin; Cmin þ "Ctoli. Here Cmin is the new

candidate cost for the best position found, " is a user-defined

selection fraction (" ¼ 0:1) and Ctol is the allowed cost toler-
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ance for the solution (see program parameters promotefrac

and tolcost in the supplemental code description). The atom

positions outside the cost window are discarded, ensuring that

the better selection probability of a ‘good’ site is not over-

whelmed by a large quantity of poor positions. A winner atom

is randomly selected from the remaining set of good atoms.

The winner atom is added to the candidate, and it uses n

lengths from the target list. The costs of other atoms in the

pool are recalculated with respect to the new candidate

subcluster and the shortened distance table. If the candidate

has fewer than N atoms and there are any atoms inside the

cost window, a new winner is selected and added. This can lead

to an avalanche of added atoms, potentially reducing the long-

term overhead associated with generating larger high-quality

candidates.

Every division keeps a record of how many test positions

were generated and how many accepted for each of the three

placement techniques. These data are used to estimate the

success rate of each technique, and the more successful

methods get proportionally preferred when placing new atoms

at a particular size. We assume the number of accepted posi-

tions generated by method m has a binomial distribution with

probability pm. If method m has created nm positions, of which

sm have been selected, the probability pm is known with

the beta distribution Bð�; �Þ, where � ¼ sm þ 1 and

� ¼ nm � sm þ 1. The beta distribution is conjugate prior to

the binomial distribution, and so the program estimates the

success rate pm by generating a random number from the

appropriate beta distribution. Given total number of test

positions t to allocate for an enlarged cluster, the method m

will be used t � ðpm=
P

i piÞ times.

3.3. Relegation

The relegation operation reassigns a candidate subcluster to

a lower division n0 ¼ n�m by removing m loser atoms. The

loser atoms are randomly selected according to their cost from

all the atoms in the cluster. After their removal the target

lengths associated with the destroyed atom pairs are returned

to the target list of distances.

4. Special cases in the Liga algorithm

Several special cases can alter the simple behavior of the Liga

algorithm. In order to keep the description in x2 focused on

the fundamental concepts, we have delayed their discussion

until now.

4.1. Initial conditions

The algorithm may be initialized with a single copy of a

trivial one-atom structure in the lowest division or a non-

trivial cluster of larger size, nmin > 1. Any existing lower divi-

sions (i.e., nmin > n> 1) are initialized with relegated copies of

the initial structure. A non-trivial starting structure can be

particularly useful for cases in which a quality guess or known

substructure already exists.

Each division is set to contain a fixed number of candidates,

but at the beginning they are completely or partially empty.

When a winner for promotion is selected from a division that

is not full it adds a copy of itself to that division in addition to

being promoted. Similarly, when a loser is selected for rele-

gation from a division that is not full it adds a copy of itself to

that division before being relegated. Finally, after a winner is

promoted it checks to see if there are any empty divisions

below its new division. If this is the case then it adds an

appropriately relegated clone of itself to those empty divi-

sions.

4.2. Fixed subclusters

By default the Liga algorithm creates divisions of size 1 to N

and runs through each. However, if the unknown structure

contains a known subcluster of nmin atoms, it is neither

necessary nor meaningful to consider candidates of this or

smaller sizes. A user may specify some or all of the atoms in an

initial structure as fixed. The Liga competitions are then

performed only for divisions nmin to N, and the nmin fixed

atoms are kept in all subclusters. Fixed subclusters can be

advantageous for systems containing rigid chemical subunits

such as aromatic rings or fourfold silicon sites.

4.3. Very good promotions

A winning candidate’s total cost after promotion is often

greater than that of the losing candidate which is to be rele-

gated. The Liga algorithm attempts to retain well performing

candidates so when a winner’s cost is lower, the loser is

replaced with a clone of the promoted winner. The loser is

discarded from the collection of candidate subclusters. This

operation has an analogy in sports competitions, where a

poorly performing team may adopt the ‘game’ of its better

opponents.

4.4. Promotion of best candidate

Promotion often removes the fittest candidate from a divi-

sion, which can be quite detrimental to the division’s overall

fitness if the best remaining candidate is extremely costly by

comparison. Before promoting a winning candidate the Liga

algorithm determines whether it has the lowest cost in its

division. If this is so, after promotion and relegation have been

completed it compares this cost to that of the new best

candidate in the division. If that candidate has a significantly

higher cost (e.g., by a factor of 10) then the division selects a

loser candidate and replaces it with a copy of the original (pre-

promotion) winner. The loser is then completely removed

from the collection of candidate subclusters.

4.5. Skipping unfavorable promotions

Some candidates have such high cost that it is extremely

unlikely that promoting them will introduce better structures

that can be retained. This is particularly true early on, when

few if any good candidates populate the upper divisions. Since

promotion is a computationally expensive procedure, it may

be better to not promote such candidates even if they have
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won the division. Thus, after a winning candidate has been

selected, but before the promotion process begins its cost is

compared to a user-defined maximum cost. If it exceeds this

limit the algorithm skips to the next division without

performing promotion or relegation.

4.6. Loose multiplicity constraints

When target distance lists are obtained from experimental

PDF data, they may contain significant errors in the multi-

plicity of unique distances. This is a problem especially

because underestimated multiplicities may greatly increase

the cost value of the correct structure. Under such circum-

stances it is advantageous to relax adherence to distance

multiplicities or even ignore multiplicities altogether, as done

in xx5.2 and 5.3 below. In the first case, the target distance table

text
l is constructed with distance multiplicities increased by a

fixed percentage, and thus it contains more lengths than

actually present in the searched structure. In the second case,

the program allows any target distance to be compared with

the model structure an arbitrary number of times. This is in

effect the same as setting infinite multiplicities for all lengths

in the target set tk.

5. Results

Algorithm performance was benchmarked for several struc-

tures using both experimental and ideal distance lists. All data

were obtained on a high-performance cluster running 2.3 GHz

quad-core Intel Xeon processors. The supplementary material

includes C++ source code, length lists for all the structures

reported below and the algorithm parameter values used to

generate these results.1

Owing to the stochastic nature of the Liga algorithm, the

CPU times required for convergence to a given cost tolerance

can vary by as much as an order of magnitude. To obtain a

meaningful assessment of the algorithm speed, each bench-

mark has been repeated at least 100 times using the same

algorithm parameters but different seeds of the random-

number generator. This reduced the standard deviation of the

average run time by a factor of 10 and thus allowed deter-

mination of the effects of algorithm parameters on the solu-

tion time. The Liga algorithm uses the MT19937 random-

number generator (Matsumoto & Nishimura, 1998), which is

the default algorithm provided by the GNU Scientific Library

(GSL) (Galassi et al., 2006). Fig. 2 shows a histogram of

structure solution times from 900 benchmark runs on ideal

distances from a 50-atom Lennard–Jones (LJ-50) cluster. The

distribution has an asymmetric shape with a slowly decaying

tail for long solution times. To account for this, the standard

deviation of run times was calculated separately for those

times lower and higher than the average, and both low and

high standard deviations are reported. Fig. 2 indicates the

mean solution time and its low and high deviations in the

histogram of solution times for LJ-50 clusters.

5.1. Lennard–Jones clusters

Lennard–Jones clusters are minimum-energy configurations

of N atoms that interact via the Lennard–Jones (LJ) pair

potential. These structures are often used for benchmarking

energy-minimization algorithms (Deaven et al., 1996; Wales &

Scheraga, 1999; Cai & Shao, 2002). In our study we used the

published coordinates of LJ clusters (Wales & Doye, 1997;

Hartke, 1999) to calculate ideal distance lists and feed them

back into the Liga algorithm to reconstruct the original

structure.

In the first step we have run the code on a few clusters at

several different sizes up to 150 atoms. All of these runs

converged successfully to a structure with final cost below

0.0001 Å2 and with the same atomic coordination number for

each atom as the correct solution. The atomic coordination

properties of a cluster were assessed by calculating the coor-

dination histogram, which counts the number of atoms in the

cluster that have a given coordination number.

In the following studies we evaluated the effects of algo-

rithm parameters on the time required to solve LJ clusters.

While the optimum parameters may vary widely for different

structures, these studies allow us to assess the general impact

of each parameter on performance and tune the algorithm’s

parameters toward improved performance.

The first parameter studied was seasontrials, the number of

atom positions generated in a complete season. Since

generation of atom positions and evaluation of their costs is,

computationally, the most expensive operation in the Liga

algorithm, seasontrials also provides a measure of CPU time

required for one season of competition. The placement trials

are shared among all divisions in Liga, and large values of

seasontrials allow for a thorough search for low-cost atoms to

add during the subcluster promotion procedure. When,

however, seasontrials is too large it can slow down the
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Figure 2
Histogram of run times required for reconstruction of the LJ-50 cluster
from ideal distances. All runs used equivalent settings with the exception
of the random-number-generator seed.

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: MK5018). Services for accessing these data are described
at the back of the journal.



performance, because a more limited number of Liga seasons

can then be carried out. On the contrary, when seasontrials is

small, the number of played seasons becomes large, but the

promoted subclusters have lower quality because the search

for good configurations is too superficial.

The impact of seasontrials was measured for Lennard–Jones

clusters of 30, 50 and 70 atoms, as shown in Fig. 3. Each of

these clusters was solved for a set of seasontrials values

ranging from 2 � 103 to 107. All three curves display a

minimum at an optimal value of seasontrials, and this value

increases with the size of the cluster. We have fitted the

optimum values of seasontrials to the empirical formula

seasontrials ¼ AP ¼ ANðN � 1Þ=2: ð7Þ

This formula has been chosen because P, the number of pairs

in the structure, is also the number of constraints the solution

needs to satisfy and it makes sense to increase the times for

promotion search at the same rate. Table 1 lists the observed

optimum seasontrials together with the values modeled by

equation (7), where the constant A was optimized to A = 20.

This equation provides a useful estimate of the location of the

minimum, but should not be considered fully quantitative.

In the next study we have evaluated the effect of the ligasize

parameter, which specifies the size of a Liga division (i.e., the

number of competitors at each possible cluster size). The

benchmarks were performed for the LJ-70 cluster with the

value of seasontrials set to its near-optimum value of 50 000.

Fig. 4 compares the run times for the values of ligasize ranging

from 1 to 10. The observed run times remained essentially the

same as the number of competitors was decreased from 10 to

3. For two competitors the average solution time was

increased by 50% and for ligasize = 1 it was inflated by three

orders of magnitude to more than 2 days. The average solution

time shows a broad minimum value at around five competitors.

The sharp decline in performance for small ligasize was

expected, because with a tiny population of candidates the

algorithm cannot distinguish good candidates from faulty

ones. Another consequence of this limit is that the program

stores fewer cost points in the phase space of all possible

structures. For the values of ligasize exceeding 5, however, the

average run times also slightly increased. This may be caused

by the fact that the total winning probability of the best

candidate decreases with the number of competitors. In other

words, if a Liga division contains one excellent candidate, a

large number of average competitors make it less likely for

this candidate to be selected for promotion. However, this

effect is very moderate at the tested values of ligasize and only

distinguishable in the average times. The standard deviations

of observed times are large, and for practical purposes the

expected run times are very similar for all ligasize values

ranging from 3 to 10.

In the third study we compared the performance for LJ

clusters sized 10, 20, 30, . . . , 100. These runs were performed

using optimum values of seasontrials as modeled from Table 1.

Fig. 5(a) displays run times versus the size of the modeled

clusters. The solution times increase monotonically with the
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Figure 4
Solution times for the LJ-70 cluster versus the number of competitors at
the same size (parameter ligasize). Each data point comes from 100
repeated runs with different random-number-generator seeds. The tighter
error bars denote standard deviations of the average times.

Figure 3
Liga run time for LJ clusters of size 30, 50 and 70 as a function of
seasontrials, the number of atom positions generated in a complete
season. The positions of error bars are slightly shifted to reduce their
overlap.

Table 1
Optimum values of seasontrials.

These values were obtained from a parameter study and their values were
modeled by equation (7) with A = 20.

seasontrials

Cluster Ideal Modeled

LJ-1 1 0
LJ-30 16000 8700
LJ-50 20000 24500
LJ-70 50000 48300



exception of large spikes for LJ-30 and LJ-80. The origin of

this trend can be better understood by introducing the concept

of the per-distance entropy of the input distances lists,

Fig. 5(b). The entropy of the distance data was calculated from

the number of possible assignments of P distances to P atom

pairs by using

Sd ¼
1

P
log

P!

m1!m2! . . . ml!
’

1

P
P logðPÞ �

X
i

mi log mi

" #
;

ð8Þ

where mi is the multiplicity of each unique distance. The

multiplicities mi were evaluated by re-binning the distance list

with a step of 0.02 Å and counting distances in each bin. The

value of the bin size was chosen according to the target

simulation cost, which had to decrease below 0.0001 Å2; this

value corresponds to a standard deviation between data and

model distances of 0.01 Å. This analysis suggests that distance

lists with many unique distances are harder for Liga to solve,

while structures with short lists of unique distances are solved

more efficiently.

5.2. C60 nanostructure

The Liga algorithm successfully converges to the C60

structure using ideal distances as well as those derived from

neutron PDF data (Juhás et al., 2006). A summary of these

results is given in Table 2, with 100% of the attempted trials

resulting in convergence to a truncated icosahedral shape.

For angle-averaged neutron and X-ray scattering data, the

pair distances and their multiplicities can be extracted by

fitting Gaussian profiles to the experimental radial distribution

function (RDF), R(r) (Egami & Billinge, 2003). The R(r)

function is obtained from G(r), the measured PDF, after

background subtraction as

RðrÞ ¼ r½GðrÞ �Gbg�: ð9Þ

In the case of C60, the background Gbg was modeled by a

piece-wise linear function with a single break. This is a correct

particle–particle correlation function for randomly oriented

spherical shells, as shown in Thorpe et al. (2002). The pair

distances and multiplicities were obtained using a simplified

approach, where the distances were assigned to peak maxima

and shoulders on the leading or trailing edges of peaks of RðrÞ,

Fig. 6(a). The shoulder positions were set at the inflection

points on the peak slopes, where the first derivative has either

a positive local minimum (leading edge) or a negative local

maximum (trailing edge). The multiplicities of the corre-

sponding distances were estimated by numerical integration of

the RDF, where integration limits were set either at the peak

foot or, in the case of a shoulder position, at midpoints defined

by the ratio of RDF amplitudes. The length list extracted by

this procedure had 14 unique lengths rather than the 21 of the

ideal structure, Fig. 6(b). Despite these deviations in the

extracted distance list, a correct structure solution was

obtained without the use of any prior structure information.

The extracted multiplicities of C60 distances contain errors

due to unresolved peak overlap and noise in the data. The

target table contained too few distances at some values while

others had excessive multiplicities. These errors in multiplicity

cause convergence to a faulty structure when run with a tight

distance list of 1770 lengths (the number of pairs in a 60-atom

cluster). In fact, the cost of the faulty structure with respect to

Acta Cryst. (2008). A64, 631–640 P. Juhás et al. � Liga algorithm 637

research papers

Figure 5
(a) Average run time of LJ-n solution as a function of structure size n. The
low-value error is in fact smaller than the high-value deviation, but
displays longer owing to the logarithmic scale. Simulations were
performed 100 times at each structure size. (b) Entropy per distance of
input distance lists.

Table 2
Liga performance for C60 reconstruction from ideal and experimentally
measured distance data.

The required solution cost was 0.0001 Å2 for ideal and 0.00345 Å2 for neutron
PDF distances. tCPU is the average time taken to reach convergence and �t

gives standard uncertainties for run times below and above tCPU.

Data type Trials tCPU (s) �t (s)

Ideal 225 1.6 �1.1, +1.7
Neutron PDF 225 1100 �650, +930



the tight data was lower than for the correct solution (Juhás et

al., 2006). To overcome such errors, the multiplicity of every

unique distance has been increased by 10%, and for such loose

distance lists the algorithm converged to the correct structure.

The effect of distance multiplicities on the solution is discussed

in detail in x5.3 below.

Fig. 7 shows the development of the eventual solution

(winner) in a typical C60 simulation from neutron PDF data.

The solution cluster moves between sizes 45 to 55 as its cost

gradually decreases. Adjacent seasons where the cost changes

but the size does not are indicative of the very good promo-

tions described in x4.3. At size 55, there is significant back-

tracking to a smaller size of about 40 atoms. This backtracking

is through the relegation process and is essential to finding the

solution.

5.3. Effect of loosening multiplicity constraints

For a successful solution of C60 from neutron PDF data the

extracted distance list had to be loosened by increasing all

distance multiplicities by 10%. This ‘relaxation’ of the distance

constraints allowed the program to overcome errors from

incorrectly estimated multiplicities, which would otherwise

prevent convergence to the correct answer. In this case it was

more important to fit the high-precision distance values than

to satisfy their high-error multiplicities. In fact, for several

shapes the multiplicities can be ignored (made arbitrarily

large), and the correct structures are obtained from the set of

the unique distance values alone. The simplest example of this

effect is a tetrahedron, which is the largest three-dimensional

shape containing just one pair-distance value; any placement

of a separate fifth atom would create a different distance. A

similar effect occurs with the ideal buckyball. Fig. 8 shows the

cost–size dependence for the best clusters found using only the
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Figure 6
(a) Extraction of target distance table from neutron RDF data for C60.
The experimental distances were obtained from peak and shoulder
positions (asterisks) and their multiplicities by integrating peak areas.
The integration limits marked by red and green triangles were set at peak
feet or proportionally to the RDF amplitude for the overlapping peaks.
Adapted from Juhás et al. (2006) Fig. 2(b) using an updated model for
interparticle correlations. (b) Comparison of extracted target distances
with the ideal distance list.

Figure 8
Minimal cost of structures found at various structure sizes using the ideal
C60 distances and unconstrained multiplicity. In addition to the buckyball,
the insets show examples of such structures for 81 and 93 atoms.

Figure 7
The size and cost of the eventual solution as it converges to the C60

nanostructure. The cost of the best structure of size 60 found at each
season is included for comparison.



21 unique distances in the ideal buckyball. The best cost

remains at 0 up to size 60, and thus the buckyball seems to be

the largest shape consistent with exactly those distances.

Addition of an atom to make a structure of size 61 incurs a

non-zero cost and the cost continues to increase with further

atom addition. This intriguing behavior presents an interesting

mathematical puzzle which is beyond the scope of this

study.

6. Discussion and conclusions

Although the Liga algorithm uses some strategies character-

istic of other optimization algorithms, it modifies them in

unique ways in order to solve the nanostructure problem. Liga

shares aspects with techniques such as reverse Monte Carlo

(McGreevy & Pusztai, 1988), and a variety of other strategies

based on simulated annealing (Bortz et al., 1975; Kirkpatrick et

al., 1983; Dall & Sibani, 2001) and evolutionary algorithms

(EAs) (Goldberg, 1989; Deaven et al., 1996; Hartke, 1999),

which calculate the energy or cost associated with changing

the position of an atom in a candidate structure. The Liga

algorithm, however, is unique in that it keeps a pool of ‘good’

atom positions for the promotion process and can use a string

of promotions to rapidly generate larger high-quality struc-

tures.

Liga maintains multiple competitors of each subcluster size,

which is typical of some EA solvers and genetic algorithms

(GAs) that modify the problem being solved into levels of

difficulty (Cantu-Paz, 2001); for example the injection archi-

tecture (Lin et al., 1994) creates multiple levels in a problem.

Liga is unique, however, in that it not only promotes candidate

clusters to higher levels (closer to the final solution), but also

relegates solutions from a higher level to a lower level. The

relegation strategy is useful in that it keeps the best of both

worlds: promoted candidates provide an improved starting

point for finding better, more complete, subclusters while

relegated candidates are disassembled in a way that maintains

improved subclusters as competitors in later Liga seasons.

Perhaps the most remarkable aspect of the Liga algorithm is

that it finds nanostructures without the use of any information

other than the distance list. This can be compared to the NMR

structure solution of soluble proteins, where a great deal of

prior knowledge and, most importantly, assignment is carried

out prior to reconstruction (Brünger et al., 1998; Herrmann et

al., 2002). It is not obvious, a priori, that sufficient information

exists in the distance list to carry out a reconstruction, since

the problem we seek to solve amounts to inverting scattering

data to find a structure. The distance-list formulation of this

problem, as described here, removes the traditional ‘phase’

problem, but introduces its own computational complexities

via the large number of ways of placing NðN � 1Þ=2 distances

between N atoms. This problem is not without mathematical

precedents (Hendrickson, 1995), but there are no mathema-

tical theorems that guarantee that a unique nanostructure can

be found from its distance list. In contrast, some simple

structures, such as the hexagon, are known to be degenerate

with other structures which have the same distance lists;

however, adding even a single additional atom usually

removes this degeneracy.

At a more practical level, the promise of Liga can only be

fully realized if it is robust to experimental uncertainties and if

it can be generalized to find the correct chemical placements

of atoms in binary and more complex nanostructures. Liga has

already demonstrated some degree of robustness by recon-

structing the correct structure of fullerenes from noisy

neutron-scattering data. The addition of prior constraints

should be very helpful in reconstructing more difficult struc-

tures, or those with data suffering from increased noise.

Moreover, we have carried out preliminary studies of the

generalization of Liga to placement of chemical species in

binary and more complex systems. One approach, divide and

conquer, follows straightforwardly from the results presented

in this paper. In this approach we use the fact that the

geometry of candidate subclusters may be generated using

only the unique distance list while allowing each distance to

occur an arbitrary number of times in the structure. Although

we cannot expect this procedure to always identify the correct

geometry, we do expect it to create a set of low-cost candidates

for the second stage of the procedure, the placement of

chemical species. The second stage of the divide and conquer

procedure assigns chemical species to the known atom sites

and finds the cost of each placement. At this stage information

about viable chemical structures and coordinations can be

used. This information can be provided by techniques such as

EXAFS and solid state NMR, as well as prior knowledge.

Thus,

both the robustness and chemical-placement issues appear to

have viable solution paths, suggesting that the Liga

algorithm can form the basis of broad and robust methods for

generating high-quality candidates for nanostructure refine-

ment.

An area where Liga performs more poorly is when the

distance list contains a very large number of unique distances.

We have further tested this behavior using completely random

point sets which have NðN � 1Þ=2 unique distances,

confirming that Liga performs poorly for these rather

unphysical cases. Nevertheless, the physical origin of this

reduced performance is the fact that these random structures

have a very large number of local minima which compete with

the true minimum of the reconstruction. Liga has difficulty

navigating this phase space as there are a very large number of

‘good’ atom placements that do not appear in the global

minimum. This problem can be expected to occur in very low

symmetry nanostructures and remains an important additional

challenge for the future. Nevertheless, the algorithm was still

successful for medium-symmetry structures, such as the 112-

atom unit cell of the Peierls charge-density-wave material

CeTe3 (Kim et al., 2006) or the 71-atom functionalized C60-N-

methylpyrrolidine (Sun et al., 1997), which were solved from

generated distance data. The symmetry of these structures is

much lower than for C60, as reflected in their distance entro-

pies Sd, equation (8), which are 4.2 and 5.7, compared to Sd =

3.0 for C60. Another area where we expect the procedure to be

applicable is the determination of local structure deviations
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from an average crystallographic lattice, such as those that

occur in ferroelectric perovskites, (Dmowski et al., 2000; Juhás

et al., 2004).

In conclusion, the detailed benchmarking and tests we have

presented indicate that the Liga procedure can reconstruct

noncrystalline motifs from high-quality scattering data alone.

Generalization of the current Liga strategies to binary and

higher-order systems and low-symmetry structures, and the

need for a robust response to experimental uncertainties

remain a challenge, though viable approaches for resolving

these issues do not appear intractable.
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